Question	Answer		Mark
Number			
1(a)(i)	Use of πr^2 or $\pi d^2/4$	(
	Use of $\rho = m/V$	(
	m = 1960 (kg)	(1)	3
	Reverse argument leading to $\rho = 9130$ (kg m ⁻³) scores max 2		
	Example of calculation		
	$V = \pi r^2 \ell = \pi \times (0.815 \times 10^{-3} \text{ m})^2 \times 105 \times 10^3 \text{ m} = 0.219 \text{ m}^3$		
	$m = aV = 8960 k gm^{-3} \times 0.219 m^3 = 1962 k g$		
	$m = p v = 0000 \text{ kgm}^{-1} \times 0.210 \text{ m}^{-1} = 1002 \text{ kg}^{-1}$		
1(a)(ii)	Use of $\Delta E = mc\Delta T$	(1)	
	$\Delta E = 8.0 \times 10^8 \mathrm{J}$	(1)	2
	$\Delta E = 8.2 \times 10^8 \text{ J}$ if show that value used		
	Example of calculation		
	$\Delta E = m c \Delta \theta = 1962 \text{ kg} \times 385 \text{ JK}^{-1} \text{ kg}^{-1} \times (1085 - 25) \text{ K} = 8.0 \times 10^8 \text{ J}$		
4 (1-)			
1(D)	Idea that whilst copper is being heated to melting point, energy supplies (mainly) transformed into $K = af$ atoms/melagylag	olied (1)	
	is (manny) transformed into K.E. of atoms/molecules	(1)	
	At melting point:		
	no change in K.E. of atoms/molecules OR energy supplied is		
	transformed into P.E. of atoms/molecules	(1)	2
	Total for question		7

Question Number	Answer		Mark
2(a)	The water molecules will have a greater average K.E.		
	Or the water will be hotter		
	Or less energy transferred to teapot	(1)	1
2(b)(i)	Use of $\Delta E = mc\Delta \theta$	(1)	
2(0)(1)	$\Delta E = 15\ 000\ \text{J}$	(1)	2
	$\Delta L = 15\ 000\ \mathrm{J}$	(1)	-
	Example of calculation:		
	$\frac{1}{4} \sum_{k=1}^{1} \sum_{k=1}^$		
2(b)(ii)	$\Delta E = m(\Delta 0 = 0.20 \text{ Kg} \times 4200 \text{ J Kg}^2 \text{ K} \times (35 = 61) \text{ K} = 15 500 \text{ J}$	(1)	
2(0)(1)	Assumption. To heat is lost to the sufformatings of an energy goes to the teaport. Use of AE value from (i) in $AE = meA\theta$	(1)	
	Use of ΔE value from (1) in $\Delta E = mc\Delta \theta$	(1)	2
	c = 600 (J Kg K)	(1)	5
	Example of calculation:		
	ΔF 15300 I		
	$c = \frac{\Delta L}{1 + c} = \frac{15500 \text{ J}}{0.424 \text{ J}} = 603 \text{ J kg}^{-1} \text{ K}^{-1}$		
	$m\Delta\theta = 0.43 \text{ kg} \times (81-22) \text{ K}$		
2(b)(iii)	(The calculated value for the specific heat capacity has been overestimated) because		
	energy is transferred to the surroundings (by heating)	(1)	
	so the energy gained by the teapot has been overestimated	(1)	2
	Total for question		8

Question	Answer		Mark
18 (a)(i)	17 -		
	$ N + \alpha \rightarrow ^{1} \circ O + _{1} p$		
	8 11	(1) (1)	1
	All values correct	(-)	-
18(a)(ii)	In nuclear fission a chain reaction can be set up		
	Or in a chain reaction the (total) energy released can be very large		
	Or a very high reaction rate releases much more energy	(1)	1
		, ,	
18 (b)	Attempt at mass deficit calculation Use of $4E = a^2 4m$ (Allow use of $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$)	(1)	
	Use of 1 MeV = 1.6×10^{-13} J (Allow use of 1 u = 1.00×10^{-10} kg) (Allow use of 1 u = 931.5 MeV/c ²)	(1)	
	$\Delta E = 174 \text{ MeV}$	(1)	4
	Example of calculation		
	$\Delta m = (390.29989 - 233.99404 - 152.64708 - (2 \times 1.67493)) \times 10^{-27} \text{ kg}$		
	$\Delta m = 3.0891 \times 10^{-28} \text{ kg}$		
	$\Delta E = (3.00 \times 10^8 \mathrm{m s^{-1}})^2 \times 3.0891 \times 10^{-28} \mathrm{kg} = 2.780 \times 10^{-11} \mathrm{J}$		
	$2.780 \times 10^{-11} \text{ J}$ 172 0 V V		
	$\Delta E = \frac{1.60 \times 10^{-13} \mathrm{J} \mathrm{MeV}^{-1}}{1.60 \times 10^{-13} \mathrm{J} \mathrm{MeV}^{-1}} = 1.73.8 \mathrm{MeV}$		
18 (c)(i)	Same number of protons [do not accept atomic/proton number],	(1)	•
	[do not accept mass/nucleon/neuton number]	(1)	2
18(c)(ii)	Correct calculation for ω [see 6283 or 2000 π or <u>60 000 x 2π</u>]	(1)	
	$a = (-) 5.9 \times 10^6 \mathrm{m s^{-2}}$	(1)	2
		(1)	-
	Example of calculation		
	$(60000 \times 2\pi)^2$		
	$a = -\left \frac{60000 \times 2\pi}{60 \text{ s}}\right \times 15 \times 10^{-2} \text{ m} = 5.92 \times 10^{6} \text{ m s}^{-2}$		
18(c)(iii)	2		
	Stiff/stiffness Strong (strong th	(1)	
	Low density	(1) (1)	2
10/2			
18(d)	Use of $\Delta E = mc\Delta\theta$ Rate at which energy is removed = 3.1×10^9 (W)	(1)	
	Use of the efficiency equation [must have 2.2×10^9 (W) on top line]	(1)	
	Efficiency = 42% [accept 0.42]	(1)	4
	Example of calculation		
	$\Delta E = 70000 \text{ kg} \times 3990 \text{ J kg}^{-1} \text{ K}^{-1} \times 11 \text{K} = 3.07 \times 10^9 \text{ J}$		
	$_{\text{0}}$ affining useful power output $_{\text{100}}$ $2.2 \times 10^9 \text{ W}$ $_{\text{100}}$ 41.50		
	$\frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{(2.2 + 3.1) \times 10^9} \text{ W}^{100} = 41.5\%$		
	Total for question 19		16
	1 OTAL FOR QUESTION 18		16

Question	Answer		Mark
Number			
4 (a)	Max 4		
	Assumption: that no energy is transferred to the surroundings OR all ener	gy	
	transferred from washers to water OR energy required to raise temperature		
	of container is negligible OR no water evaporates	(1)	
	Measure the mass of the washers and water (using a balance)	(1)	
	(Use a thermometer to) measure the temperature of the water before and		
	after the washers are plunged into the water	(1)	
	Equate thermal energy lost by steel to the energy gained by water	(1)	
			Max 4
	Use a (standard) value for the specific heat capacity of the water		
	OR specific heat capacity of water is known	(1)	
4(b)(i)	Infra-red	(1)	1
4(b)(ii)	Use of λ_{max} T=2.898 × 10 ⁻³	(1)	
		. /	
	$T = 1450 \text{ (K)}$ OR $\lambda_{\text{max}} = 1.93 \times 10^{-6} \text{ (m)}$	(1	2
		`	
	Example of calculation		
	$\frac{1}{2.898 \times 10^{-3} \text{ mK}}$		
	$T = \frac{2.050 \times 10^{-6} \text{ mm}}{2.010^{-6} \text{ m}} = 1450 \text{ K}$		
	2×10 m		
4(b)(iii)	Use of $L = 4\pi r^2 \sigma T^4$	(1)	
	Correct substitution of radius	(1)	2
	L = 1970 W [2250 W if show that value used]	(1)	3
	Example of calculation		
	$L = 4\pi \times (2.5 \times 10^{-2} \text{ m})^2 \times 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4} (1450 \text{ K})^4 = 1970 \text{ W}$		
4(b)(iv)	Curve with higher peak	(1)	
	Shifted over to left	(1)	2
	Total for question		12

Question	Answer	Mark
Number		
5	Use of $E_{k} = \frac{1}{2}mv^{2}$ (1) Use of 25% (1) Use of $\Delta E = mc\Delta\theta$ (1) $\Delta \theta = 39 \text{ K} [\text{accept } 39^{\circ}\text{C}]$ (1) <u>Example of calculation:</u> $E_{k} = \frac{1}{2}mv^{2} = 0.5 \times 1200 \text{ kg} \times (25 \text{ ms}^{-1})^{2} = 3.75 \times 10^{5} \text{ J}$ $\Delta \theta = \frac{\Delta E}{mc} = \frac{0.25 \times 3.75 \times 10^{5} \text{ J}}{5.3 \text{ kg} \times 450 \text{ J} \text{ kg}^{-1} \text{ K}^{-1}} = 39.3 \text{ K}$	4
	Total for Question	4

Question	Answer		Mark
Number			
6 (a)	Any two from:		
	Air behaves as an ideal gas	(1)	
	Temperature (in the lungs) stays constant	(1)	
	Implication of no change in mass of gas	(1)	(max 2)
6 (b)(i)	Use of p=m/V	1)	
	Correct answer (1.3 \times 10 ⁻⁴ kg s ⁻¹)	(1)	(2)
	Example of calculation:		
	$m = V.\rho = 2.5 \times 10^{-4} m^3 \times 1.2 kg m^{-3} = 3 \times 10^{-4} kg$		
	$\frac{\Delta m}{\Delta t} = 3 \times 10^{-4} \text{ kg} \times \frac{25}{60 \text{ s}} = 1.25 \times 10^{-4} \text{ kg} \text{ s}^{-1}$		
6 (b)(ii)	Use of $\Delta E = mc \Delta \theta$	(1)	
	Correct answer (2.2 W) ecf	(1)	(2)
	Example of calculation:		
	$P = 1.25 \times 10^{-4} \text{ kg s}^{-1} \times 1000 \text{ J kg}^{-1} \text{ K}^{-1} \times (37.6 - 20.0) \text{ K} = 2.2 \text{ W}$		
	Total for question		(6)